inquanto.ansatzes
Basic ansatzes
- class GeneralAnsatz(reference, *args, **kwargs)
Bases:
Symbolic
,Representable
Base class for a quantum state that can be represented with a single circuit.
- Parameters:
reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
]) – A reference state circuit or any valid initializer forreference_circuit_builder()
.args (
Any
)kwargs (
Any
)
- default_pass()
Get the default compiler pass for the ansatz type.
- Returns:
BasePass
– A tket pass object.
- df_numeric(symbol_map=None, *, space=None, backend=None, dtype=complex, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_numeric_representation()
to generate a numeric vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_numeric_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_numeric_representation()
.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation. Passed toget_numeric_representation()
.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted. Passed toget_numeric_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- df_symbolic(symbol_map=None, *, space=None, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_symbolic_representation()
to generate a symbolic vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Symbolic coefficients are simplified before being added to dataframe.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_symbolic_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_symbolic_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- abstract free_symbols()
Returns the free symbols in the object.
- Returns:
Set
[Symbol
] – Unordered set of symbols.
- free_symbols_ordered()
Returns the free symbols in increasing lexicographic order as SymbolSet.
- Returns:
SymbolSet
– Ordered free symbols in object.
- abstract get_circuit(symbol_map=None, compiler_pass=None)
Constructs a single state circuit.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the state.
- get_circuit_no_ref(symbol_map=None, compiler_pass=None)
Constructs a single state circuit without the reference state.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the referenceless state.
- get_numeric_representation(symbol_map=None, *, space=None, backend=None, dtype=complex)
Constructs a single numeric matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted.
- Returns:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]] – A matrix/vector representing the object.
- get_symbolic_representation(symbol_map=None, *, space=None)
Constructs a single symbolic matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.
- Returns:
Expr
– A symbolic expression as a representation, which is a symbolic NDArray.
- make_hashable()
Returns a hashable string representation of the ansatz object.
- Returns:
str
– Hashable string representation of ansatz.
- reference_qubit_state()
Create a symbolic
QubitState
representation of the reference state.- Returns:
QubitState
– Reference state as aQubitState
.
- reset_reference(reference)
Resetting the reference state of the ansatz in place.
Note
The number of qubits in the new reference has to match with the already existing reference state.
- Parameters:
reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
]) – Any reference that can be converted into a non-symbolic reference state circuit.- Returns:
Returns self with the modified reference.
- property state_circuit: Circuit
Returns the symbolic state circuit with a default compilation.
- subs(symbol_map)
Returns a new objects with symbols substituted.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
]) – A mapping for substitution of free symbols.- Returns:
TypeVar
(SYMBOLICTYPE
, bound= Symbolic) – A copy of self with symbols substituted according to the provided map.
- abstract symbol_substitution(symbol_map=None)
Performs an in-place symbol substation in the object.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Dictionary or Callable mapping existing symbols to new symbols or values.
Note
While this is an in-place operation, consistency in free_symbols_ordered() is not guaranteed.
- Returns:
TypeVar
(SYMBOLICTYPE
, bound= Symbolic) –self
, with symbols substituted.
- to_CircuitAnsatz(symbol_map=None, compiler_pass=None, ignore_default_pass=False)
Cast the ansatz as CircuitAnsatz with optional symbol substitution and compilation control.
Note
Some ansatzes have built in tket compiler passes. These can be ignored when casting to the
CircuitAnsatz
usingignore_default_pass
. This can be combined with the user defined compiler_pass for full control. If the result of self.default_pass is not ignored and a compiler_pass is defined then both sets of passes will be combined and applied.- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol substitution map.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation appliedignore_default_pass (
bool
, default:False
) – Prevents the ansatz self.default_pass being applied
- Returns:
CircuitAnsatz – A new
CircuitAnsatz
ansatz.
- to_QubitState()
Create a symbolic
QubitState
representation of the ansatz.- Returns:
QubitState
– Ansatz as aQubitState
.
- class CircuitAnsatz(circuit, reference=None)
Bases:
GeneralAnsatz
An ansatz that stores a single symbolic circuit.
- Parameters:
circuit (
Circuit
) – A symbolic circuit.reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
,None
], default:None
) – An optional reference state circuit or any valid initializer forreference_circuit_builder()
.
- default_pass()
Get the default compiler pass for the ansatz type.
- Returns:
BasePass
– A tket pass object.
- df_numeric(symbol_map=None, *, space=None, backend=None, dtype=complex, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_numeric_representation()
to generate a numeric vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_numeric_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_numeric_representation()
.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation. Passed toget_numeric_representation()
.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted. Passed toget_numeric_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- df_symbolic(symbol_map=None, *, space=None, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_symbolic_representation()
to generate a symbolic vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Symbolic coefficients are simplified before being added to dataframe.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_symbolic_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_symbolic_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- free_symbols()
Returns the free symbols in the object.
- Returns:
Set
[Symbol
] – Unordered set of symbols.
- free_symbols_ordered()
Returns the free symbols in increasing lexicographic order as SymbolSet.
- Returns:
SymbolSet
– Ordered free symbols in object.
- get_circuit(symbol_map=None, compiler_pass=None)
Constructs a single state circuit.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the state.
- get_circuit_no_ref(symbol_map=None, compiler_pass=None)
Constructs a single state circuit without the reference state.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the referenceless state.
- get_numeric_representation(symbol_map=None, *, space=None, backend=None, dtype=complex)
Constructs a single numeric matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted.
- Returns:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]] – A matrix/vector representing the object.
- get_symbolic_representation(symbol_map=None, *, space=None)
Constructs a single symbolic matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.
- Returns:
Expr
– A symbolic expression as a representation, which is a symbolic NDArray.
- make_hashable()
Returns a hashable string representation of the ansatz object.
- Returns:
str
– Hashable string representation of ansatz.
- reference_qubit_state()
Create a symbolic
QubitState
representation of the reference state.- Returns:
QubitState
– Reference state as aQubitState
.
- reset_reference(reference)
Resetting the reference state of the ansatz in place.
Note
The number of qubits in the new reference has to match with the already existing reference state.
- Parameters:
reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
]) – Any reference that can be converted into a non-symbolic reference state circuit.- Returns:
Returns self with the modified reference.
- property state_circuit: Circuit
Returns the symbolic state circuit with a default compilation.
- subs(symbol_map)
Returns a new objects with symbols substituted.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
]) – A mapping for substitution of free symbols.- Returns:
TypeVar
(SYMBOLICTYPE
, bound= Symbolic) – A copy of self with symbols substituted according to the provided map.
- symbol_substitution(symbol_map=None)
Performs an in-place symbol substation in the object.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Dictionary or Callable mapping existing symbols to new symbols or values.
Note
While this is an in-place operation, consistency in free_symbols_ordered() is not guaranteed.
- Returns:
CircuitAnsatz
–self
, with symbols substituted.
- to_CircuitAnsatz(symbol_map=None, compiler_pass=None, ignore_default_pass=False)
Cast the ansatz as CircuitAnsatz with optional symbol substitution and compilation control.
Note
Some ansatzes have built in tket compiler passes. These can be ignored when casting to the
CircuitAnsatz
usingignore_default_pass
. This can be combined with the user defined compiler_pass for full control. If the result of self.default_pass is not ignored and a compiler_pass is defined then both sets of passes will be combined and applied.- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol substitution map.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation appliedignore_default_pass (
bool
, default:False
) – Prevents the ansatz self.default_pass being applied
- Returns:
CircuitAnsatz – A new
CircuitAnsatz
ansatz.
- to_QubitState()
Create a symbolic
QubitState
representation of the ansatz.- Returns:
QubitState
– Ansatz as aQubitState
.
- class ComposedAnsatz(*ansatzes, reference=None)
Bases:
CircuitAnsatz
Composes circuit ansatzes into one circuit ansatz.
Note
The composed circuit is built by applying the arguments of the
ComposedAnsatz
constructor in reverse order. i.e. for two instances ofCircuitAnsatz
A, B, the composed circuit ofComposedAnsatz(A, B)
represents the state AB \(|0\rangle\), hence B is applied first.Examples
>>> A = CircuitAnsatz(Circuit(1).Y(0)) >>> B = CircuitAnsatz(Circuit(1).Z(0), [1]) >>> ComposedAnsatz(A, B).get_circuit() [X q[0]; Z q[0]; Y q[0]; ] >>> C = CircuitAnsatz(Circuit(1).Y(0)) >>> D = CircuitAnsatz(Circuit(1).Z(0)) >>> ComposedAnsatz(C, D, reference = [1]).get_circuit() [X q[0]; Z q[0]; Y q[0]; ]
- Parameters:
*ansatzes (
GeneralAnsatz
) – Sequence of circuit ansatzes that will be appended together.reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
,None
], default:None
) – An optional reference state circuit or any valid initializer forreference_circuit_builder()
.
- default_pass()
Get the default compiler pass for the ansatz type.
- Returns:
BasePass
– A tket pass object.
- df_numeric(symbol_map=None, *, space=None, backend=None, dtype=complex, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_numeric_representation()
to generate a numeric vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_numeric_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_numeric_representation()
.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation. Passed toget_numeric_representation()
.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted. Passed toget_numeric_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- df_symbolic(symbol_map=None, *, space=None, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_symbolic_representation()
to generate a symbolic vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Symbolic coefficients are simplified before being added to dataframe.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_symbolic_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_symbolic_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- free_symbols()
Returns the free symbols in the object.
- Returns:
Set
[Symbol
] – Unordered set of symbols.
- free_symbols_ordered()
Returns the free symbols in increasing lexicographic order as SymbolSet.
- Returns:
SymbolSet
– Ordered free symbols in object.
- get_circuit(symbol_map=None, compiler_pass=None)
Constructs a single state circuit.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the state.
- get_circuit_no_ref(symbol_map=None, compiler_pass=None)
Constructs a single state circuit without the reference state.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the referenceless state.
- get_numeric_representation(symbol_map=None, *, space=None, backend=None, dtype=complex)
Constructs a single numeric matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted.
- Returns:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]] – A matrix/vector representing the object.
- get_symbolic_representation(symbol_map=None, *, space=None)
Constructs a single symbolic matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.
- Returns:
Expr
– A symbolic expression as a representation, which is a symbolic NDArray.
- make_hashable()
Returns a hashable string representation of the ansatz object.
- Returns:
str
– Hashable string representation of ansatz.
- reference_qubit_state()
Create a symbolic
QubitState
representation of the reference state.- Returns:
QubitState
– Reference state as aQubitState
.
- reset_reference(reference)
Resetting the reference state of the ansatz in place.
Note
The number of qubits in the new reference has to match with the already existing reference state.
- Parameters:
reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
]) – Any reference that can be converted into a non-symbolic reference state circuit.- Returns:
Returns self with the modified reference.
- property state_circuit: Circuit
Returns the symbolic state circuit with a default compilation.
- subs(symbol_map)
Returns a new objects with symbols substituted.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
]) – A mapping for substitution of free symbols.- Returns:
TypeVar
(SYMBOLICTYPE
, bound= Symbolic) – A copy of self with symbols substituted according to the provided map.
- symbol_substitution(symbol_map=None)
Performs an in-place symbol substation in the object.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Dictionary or Callable mapping existing symbols to new symbols or values.
Note
While this is an in-place operation, consistency in free_symbols_ordered() is not guaranteed.
- Returns:
CircuitAnsatz
–self
, with symbols substituted.
- to_CircuitAnsatz(symbol_map=None, compiler_pass=None, ignore_default_pass=False)
Cast the ansatz as CircuitAnsatz with optional symbol substitution and compilation control.
Note
Some ansatzes have built in tket compiler passes. These can be ignored when casting to the
CircuitAnsatz
usingignore_default_pass
. This can be combined with the user defined compiler_pass for full control. If the result of self.default_pass is not ignored and a compiler_pass is defined then both sets of passes will be combined and applied.- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol substitution map.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation appliedignore_default_pass (
bool
, default:False
) – Prevents the ansatz self.default_pass being applied
- Returns:
CircuitAnsatz – A new
CircuitAnsatz
ansatz.
- to_QubitState()
Create a symbolic
QubitState
representation of the ansatz.- Returns:
QubitState
– Ansatz as aQubitState
.
- class TrotterAnsatz(exponents, reference=None)
Bases:
GeneralAnsatz
Ansatz representing a state built from a product of Pauli-exponentials.
This is at the core of the UCC family of
ansatzes
in InQuanto.Note: This class requires numerical operators within the input
QubitOperatorList
.- Parameters:
exponents (
QubitOperatorList
) – Contains exponent and symbol data.reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
,None
], default:None
) – An optional reference state circuit or any valid initializer forreference_circuit_builder()
.
Examples
>>> from inquanto.states import QubitState >>> exponents = QubitOperatorList.from_string("a [(1j, Y0 X2)], b [(1j, Y1 X3)]") >>> ref = QubitState([1, 1, 0, 0]) >>> ansatz = TrotterAnsatz(exponents, reference=ref) >>> ansatz.free_symbols_ordered() # returns an lexicographically ordered set of symbols SymbolSet([a, b]) >>> ansatz.free_symbols() == {Symbol("a"), Symbol("b")} # returns a set of symbols True >>> ansatz.subs("new_{}").free_symbols() == {Symbol("new_a"), Symbol("new_b")} # new instance True >>> ansatz2 = ansatz.symbol_substitution("new_{}") # in-place substitution >>> ansatz2 is ansatz True >>> ansatz.free_symbols() == {Symbol("new_a"), Symbol("new_b")} True
- default_pass()
Get the default compiler pass for the ansatz type.
- Returns:
A tket pass object.
- df_numeric(symbol_map=None, *, space=None, backend=None, dtype=complex, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_numeric_representation()
to generate a numeric vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_numeric_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_numeric_representation()
.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation. Passed toget_numeric_representation()
.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted. Passed toget_numeric_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- df_symbolic(symbol_map=None, *, space=None, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_symbolic_representation()
to generate a symbolic vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Symbolic coefficients are simplified before being added to dataframe.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_symbolic_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_symbolic_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- property exponents: QubitOperatorList
Returns the qubit operator exponents.
- free_symbols()
Returns the free symbols in the object.
- Returns:
Set
[Symbol
] – Unordered set of symbols.
- free_symbols_ordered()
Returns the free symbols in increasing lexicographic order as SymbolSet.
- Returns:
SymbolSet
– Ordered free symbols in object.
- get_circuit(symbol_map=None, compiler_pass=None)
Constructs a single state circuit.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the state.
- get_circuit_no_ref(symbol_map=None, compiler_pass=None)
Constructs a single state circuit without the reference state.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the referenceless state.
- get_numeric_representation(symbol_map=None, *, space=None, backend=None, dtype=complex)
Constructs a single numeric matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted.
- Returns:
Union
[_SupportsArray
[dtype
[Any
]],_NestedSequence
[_SupportsArray
[dtype
[Any
]]],bool
,int
,float
,complex
,str
,bytes
,_NestedSequence
[Union
[bool
,int
,float
,complex
,str
,bytes
]]] – A matrix/vector representing the object.
- get_symbolic_representation(symbol_map=None, *, space=None)
Constructs a single symbolic matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.
- Returns:
Expr
– A symbolic expression as a representation, which is a symbolic NDArray.
- make_hashable()
Returns a hashable string representation of the ansatz object.
- Returns:
str
– Hashable string representation of ansatz.
- reference_qubit_state()
Create a symbolic
QubitState
representation of the reference state.- Returns:
QubitState
– Reference state as aQubitState
.
- reset_reference(reference)
Resetting the reference state of the ansatz in place.
Note
The number of qubits in the new reference has to match with the already existing reference state.
- Parameters:
reference (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
]) – Any reference that can be converted into a non-symbolic reference state circuit.- Returns:
Returns self with the modified reference.
- property state_circuit: Circuit
Returns the symbolic state circuit with a default compilation.
- subs(symbol_map)
Returns a new objects with symbols substituted.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
]) – A mapping for substitution of free symbols.- Returns:
TypeVar
(SYMBOLICTYPE
, bound= Symbolic) – A copy of self with symbols substituted according to the provided map.
- symbol_substitution(symbol_map=None)
Performs an in-place symbol substation in the object.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Dictionary or Callable mapping existing symbols to new symbols or values.
Note
While this is an in-place operation, consistency in free_symbols_ordered() is not guaranteed.
- Returns:
TrotterAnsatz
–self
, with symbols substituted.
- to_CircuitAnsatz(symbol_map=None, compiler_pass=None, ignore_default_pass=False)
Cast the ansatz as CircuitAnsatz with optional symbol substitution and compilation control.
Note
Some ansatzes have built in tket compiler passes. These can be ignored when casting to the
CircuitAnsatz
usingignore_default_pass
. This can be combined with the user defined compiler_pass for full control. If the result of self.default_pass is not ignored and a compiler_pass is defined then both sets of passes will be combined and applied.- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol substitution map.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation appliedignore_default_pass (
bool
, default:False
) – Prevents the ansatz self.default_pass being applied
- Returns:
CircuitAnsatz – A new
CircuitAnsatz
ansatz.
- to_QubitState()
Create a symbolic
QubitState
representation of the ansatz.- Returns:
QubitState
– Ansatz as aQubitState
.
- to_QubitState_direct(reverse=False)
Returns a
QubitState
object corresponding to the generated state.This proceeds through direct exponentiation of individual terms and application to the reference state. The ansatz must have been constructed with a QubitState reference.
Danger
In general, this will blow up exponentially.
- Parameters:
reverse (
bool
, default:False
) – set to True to reverse the order of term application- Returns:
QubitState
– The Ansatz state.
- reference_circuit_builder(initializer)
Building a non-symbolic reference circuit.
- Parameters:
initializer (
Union
[int
,List
[Qubit
],List
[int
],QubitSpace
,QubitState
,Circuit
,None
]) –- A non-symbolic initializer circuit or an object that can be converted to one.
If
initializer
is anint
, an empty initializer circuit is created withinitializer
number of qubits.If
initializer
is alist
of qubit-s, an empty initializer circuit is created with the qubits.- If
initializer
is alist
of 0 or 1-s, an initializer circuit is created andX
gate is added for indices where the
initializer[index] == 1
.
- If
- If
initializer
is aQubitSpace
, an empty initializer circuit is created with qubits in the
QubitSpace
.
- If
- If
initializer
is a non-symbolicQubitState
, an initializer circuit is created that represents the initializer state.
- If
- Returns:
Optional
[Circuit
] – A non-symbolic reference circuit.
Fermion Space ansatzes
- class FermionSpaceStateExp(fermion_operator_exponents, fock_state, qubit_mapping=QubitMappingJordanWigner(), qubits=None, taperer=None, tapering_exponent_check_behaviour='except', *args, **kwargs)
Bases:
TrotterAnsatz
Fermion operator exponentiation (e.g. for UCC). Also initializes state trotterization.
Qubit tapering can optionally be performed. To enable qubit tapering, pass a
TapererZ2
object totaperer
. Tapering behavior can be modified by passingtapering_exponent_check_behaviour
as specified below.- Parameters:
fermion_operator_exponents (
FermionOperatorList
) – Excitation operators (anti-hermitian for UCC).fock_state (
FermionState
) – Spin orbital occupations.qubit_mapping (
QubitMapping
, default:QubitMappingJordanWigner()
) – How to map fock state operators and states to qubit operators and circuits.qubits (
Optional
[List
[Qubit
]], default:None
) – The qubit register used to represent the ansatz state. If no register is provided, a minimal register consisting of qubits indexed from 0 to N is built, where N is the number of spin-orbitals in the reference state provided. Note that this may include qubits corresponding to spin-orbitals which the excitations do not act on.taperer (
TapererZ2
, default:None
) – The taperer object used to control how the ansatz is tapered. Set toNone
(default) to skip.tapering_exponent_check_behaviour (
str
, default:"except"
) –Controls treatment of exponents which don’t commute with the Z2 symmetry operators. Options are:
"except"
: Tests each exponent and throws an exception if any exponent does not commute with the symmetry operators."skip"
: Skips exponent testing entirely. This may be dangerous (and is untested) but will be faster when exponents are known to be safe."discard"
: Tests each exponent and discards any that don’t commute with the Z2 symmetry operators. This should only discard excitations which don’t contribute to the ground state, but may be unsafe.
*args – Additional arguments offered by parent object.
**kwargs – Additional keyword arguments offered by parent object.
- default_pass()
Get the default compiler pass for the ansatz type.
- Returns:
A tket pass object.
- df_numeric(symbol_map=None, *, space=None, backend=None, dtype=complex, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_numeric_representation()
to generate a numeric vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_numeric_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_numeric_representation()
.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation. Passed toget_numeric_representation()
.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,Sequence
[SupportsIndex
]]],list
[Any
],_DTypeDict
,tuple
[Any
,Any
]], default:complex
) – Specifies what dtype the return array should be converted. Passed toget_numeric_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- df_symbolic(symbol_map=None, *, space=None, tol=1e-10)
Returns a
pandas.DataFrame
representation of the ansatz state.Uses
get_symbolic_representation()
to generate a symbolic vector for the ansatz state, and returns a dataframe with coefficients alongside their corresponding computational basis states.Assumes lexicographical ordering of basis states.
Symbolic coefficients are simplified before being added to dataframe.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation. Passed toget_symbolic_representation()
.space (
Any
, default:None
) – Basis information to represent the object. Passed toget_symbolic_representation()
.tol (
float
, default:1e-10
) – Absolute tolerance below which terms in the ansatz will be omitted from the dataframe. If negative, no terms are discarded.
- Returns:
DataFrame
– A dataframe representing the object.
- property exponents: QubitOperatorList
Returns the qubit operator exponents.
- property fermion_operator_exponents: FermionOperatorList
Returns the list of exponents of the exponential product included in the ansatz.
- free_symbols()
Returns the free symbols in the object.
- Returns:
Set
[Symbol
] – Unordered set of symbols.
- free_symbols_ordered()
Returns the free symbols in increasing lexicographic order as SymbolSet.
- Returns:
SymbolSet
– Ordered free symbols in object.
- get_circuit(symbol_map=None, compiler_pass=None)
Constructs a single state circuit.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
Optional
[BasePass
], default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the state.
- get_circuit_no_ref(symbol_map=None, compiler_pass=None)
Constructs a single state circuit without the reference state.
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – Optional symbol mapping for substitution.compiler_pass (
BasePass
, default:None
) – Optional compiler pass for circuit compilation.
- Returns:
Circuit
– A circuit that represent the referenceless state.
- get_numeric_representation(symbol_map=None, *, space=None, backend=None, dtype=complex)
Constructs a single numeric matrix/vector representation.
Danger
This is an exponentially exploding method!
- Parameters:
symbol_map (
Union
[SymbolDict
,Dict
[Symbol
,Expr
],Dict
[Symbol
,float
],Dict
[Symbol
,Union
[float
,complex
,Expr
]],Callable
[[Symbol
],Expr
],str
,None
], default:None
) – A symbol substitution map before constructing the representation.space (
Any
, default:None
) – Basis information to represent the object.backend (
Optional
[Backend
], default:None
) – An optional backend to use to build the representation.dtype (
Union
[dtype
[Any
],None
,type
[Any
],_SupportsDType
[dtype
[Any
]],str
,tuple
[Any
,int
],tuple
[Any
,Union
[SupportsIndex
,