Composed Ansatz
In this section we show to merge two InQuanto ansatzes into a single ansatz object. This can be done using the
ComposedAnsatz
class: one just needs to pass the two ansatz objects to
its constructor, with the order of parameters being the inverse of how their circuits are to be
ordered with respect to each other.
For example, if one would like to perform a multi-reference generalized UCC calculation for a
system of two electrons in four spin-orbitals, one could consider employing
MultiConfigurationAnsatz
to define a singly-excited multi-configuration reference
state with variable parameters (CI coefficients), and combining it with an empty-reference
FermionSpaceAnsatzUCCGD
:
from inquanto.spaces import FermionSpace
from inquanto.states import FermionStateString, FermionState
from inquanto.mappings import QubitMappingJordanWigner
from inquanto.ansatzes import (
MultiConfigurationAnsatz,
FermionSpaceAnsatzUCCGD,
ComposedAnsatz
)
from numpy import sqrt
space = FermionSpace(4)
fss_ref = FermionStateString([1, 1, 0, 0])
fss_1001 = FermionStateString([1, 0, 0, 1])
fss_0110 = FermionStateString([0, 1, 1, 0])
# Note: coefficients don't actually matter as we are building a symbolic ansatz.
fstate_multiconf = FermionState({fss_ref: sqrt(0.8), fss_1001: sqrt(0.1), fss_0110: sqrt(0.1)})
qubit_mapping = QubitMappingJordanWigner()
fstate_multiconf = qubit_mapping.state_map(fstate_multiconf)
ansatz_givens = MultiConfigurationAnsatz(fstate_multiconf.terms)
ansatz_uccgd = FermionSpaceAnsatzUCCGD(space, FermionState([0, 0, 0, 0]))
ansatz_multiref = ComposedAnsatz(ansatz_uccgd, ansatz_givens)
print(ansatz_multiref.state_symbols)
[gd0, theta0, theta1]
The Givens rotations of MultiConfigurationAnsatz
will be applied to the circuit first, then the unitaries of the
FermionSpaceAnsatzUCCGD
part will be appended at the end. In this particular
case the resulting multireference ansatz will be identical to a UCCGSD ansatz constructed from the HF reference state
\(|1100\rangle\) and in the same Fock space as above. For more complicated Fock spaces one could cherry-pick some
important reference states and use them in conjunction with a shallower UCC ansatz. Other use cases of combining
various ansatzes can be easily envisaged.