Bibliography

[1]

Greene-Diniz, Gabriel, Manrique, David Zsolt, Sennane, Wassil, Magnin, Yann, Shishenina, Elvira, Cordier, Philippe, Llewellyn, Philip, Krompiec, Michal, Rančić, Marko J., and Muñoz Ramo, David. Modelling carbon capture on metal-organic frameworks with quantum computing. EPJ Quantum Technol., 9(1):37, 2022. doi:10.1140/epjqt/s40507-022-00155-w.

[2]

Hans Hon Sang Chan, David Muñoz-Ramo, and Nathan Fitzpatrick. Simulating non-unitary dynamics using quantum signal processing with unitary block encoding. 2023. URL: https://arxiv.org/abs/2303.06161, doi:10.48550/ARXIV.2303.06161.

[3]

Yuta Kikuchi, Conor Mc Keever, Luuk Coopmans, Michael Lubasch, and Marcello Benedetti. Realization of quantum signal processing on a noisy quantum computer. 2023. URL: https://arxiv.org/abs/2303.05533, doi:10.48550/ARXIV.2303.05533.

[4]

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications, 2012. ISBN 9780486134598.

[5]

Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular Electronic-Structure Theory. Wiley, Chichester ; New York, 2000. ISBN 978-0-471-96755-2 978-1-118-53147-1.

[6]

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5:4213, 2014. URL: https://doi.org/10.1038/ncomms5213, doi:10.1038/ncomms5213.

[7]

Oscar Higgott, Daochen Wang, and Stephen Brierley. Variational quantum computation of excited states. Quantum, 3:1–11, 2019. arXiv:1805.08138, doi:10.22331/q-2019-07-01-156.

[8]

Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 10(1):3007, 2019. URL: https://doi.org/10.1038/s41467-019-10988-2, doi:10.1038/s41467-019-10988-2.

[9]

Yordan S. Yordanov, V. Armaos, Crispin H. W. Barnes, and David R. M. Arvidsson-Shukur. Qubit-excitation-based adaptive variational quantum eigensolver. Communications Physics, 4(1):228, 2021. URL: https://doi.org/10.1038/s42005-021-00730-0, doi:10.1038/s42005-021-00730-0.

[10]

L.-A. Wu and D. A. Lidar. Qubits as parafermions. Journal of Mathematical Physics, 43(9):4506–4525, 2002. URL: https://doi.org/10.1063/1.1499208, arXiv:https://doi.org/10.1063/1.1499208, doi:10.1063/1.1499208.

[11]

A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. 1995. arXiv:quant-ph/9511026.

[12]

Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited. Proc. Roy. Soc. Lond. A, 454:339, 1998. doi:10.1098/rspa.1998.0164.

[13]

Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett., 83:5162–5165, Dec 1999. URL: https://link.aps.org/doi/10.1103/PhysRevLett.83.5162, doi:10.1103/PhysRevLett.83.5162.

[14]

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, December 2010. ISBN 978-1-139-49548-6.

[15]

J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95():042308, 2017.

[16]

Ayush Asthana, Ashutosh Kumar, Vibin Abraham, Harper Grimsley, Yu Zhang, Lukasz Cincio, Sergei Tretiak, Pavel A. Dub, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer. Chem. Sci., 14:2405–2418, 2023. URL: http://dx.doi.org/10.1039/D2SC05371C, doi:10.1039/D2SC05371C.

[17]

Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. U. S. A., 115(38):9456–9461, September 2018. doi:10.1073/pnas.1801723115.

[18]

Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Soc., 2002.

[19]

Krysta M Svore, Matthew B Hastings, and Michael Freedman. Faster phase estimation. arXiv:1304.0741, 2013. arXiv:1304.0741.

[20]

Kentaro Yamamoto, Samuel Duffield, Yuta Kikuchi, and David Muñoz Ramo. Demonstrating bayesian quantum phase estimation with quantum error detection. arXiv:2306.16608, June 2023. arXiv:2306.16608.

[21]

Miroslav Dobšíček, Göran Johansson, Vitaly Shumeiko, and Göran Wendin. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys. Rev. A, 76(3):030306, September 2007. doi:10.1103/PhysRevA.76.030306.

[22]

P J J O'Malley, R Babbush, I D Kivlichan, J Romero, J R McClean, R Barends, J Kelly, P Roushan, A Tranter, N Ding, B Campbell, Y Chen, Z Chen, B Chiaro, A Dunsworth, A G Fowler, E Jeffrey, E Lucero, A Megrant, J Y Mutus, M Neeley, C Neill, C Quintana, D Sank, A Vainsencher, J Wenner, T C White, P V Coveney, P J Love, H Neven, A Aspuru-Guzik, and J M Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X., July 2016. doi:10.1103/physrevx.6.031007.

[23]

Nathan Wiebe and Chris Granade. Efficient bayesian phase estimation. Phys. Rev. Lett., 117:010503, Jun 2016. doi:10.1103/PhysRevLett.117.010503.

[24]

Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal. Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys., 21(2):023022, feb 2019. doi:10.1088/1367-2630/aafb8e.

[25]

Ewout van den Berg. Efficient Bayesian phase estimation using mixed priors. Quantum, 5:469, June 2021. doi:10.22331/q-2021-06-07-469.

[26]

Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and Simon C. Benjamin. Theory of variational quantum simulation. Quantum, 3:191, October 2019. URL: https://doi.org/10.22331/q-2019-10-07-191, doi:10.22331/q-2019-10-07-191.

[27]

Joonho Lee, William J. Huggins, Martin Head-Gordon, and K. Birgitta Whaley. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. Journal of Chemical Theory and Computation, 15(1):311–324, January 2019. doi:10.1021/acs.jctc.8b01004.

[28]

Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello. Stabilization of quantum computations by symmetrization. SIAM Journal on Computing, 26(5):1541–1557, 1997. URL: https://doi.org/10.1137/S0097539796302452.

[29]

Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. Swap test and hong-ou-mandel effect are equivalent. Phys. Rev. A, 87:052330, May 2013. doi:10.1103/PhysRevA.87.052330.

[30]

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019. doi:https://doi.org/10.1103/PhysRevA.99.032331.

[31]

William J Huggins, Joonho Lee, Unpil Baek, Bryan O’Gorman, and K Birgitta Whaley. A non-orthogonal variational quantum eigensolver. New Journal of Physics, 22(7):073009, jul 2020. doi:10.1088/1367-2630/ab867b.

[32]

Unpil Baek, Diptarka Hait, James Shee, Oskar Leimkuhler, William J. Huggins, Torin F. Stetina, Martin Head-Gordon, and K. Birgitta Whaley. Say no to optimization: a nonorthogonal quantum eigensolver. PRX Quantum, 4:030307, Jul 2023. URL: https://link.aps.org/doi/10.1103/PRXQuantum.4.030307, doi:10.1103/PRXQuantum.4.030307.

[33]

Gian Giacomo Guerreschi and Mikhail Smelyanskiy. Practical optimization for hybrid quantum-classical algorithms. 2017. arXiv:1701.01450.

[34]

Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, Jun 2017. doi:10.1103/PhysRevX.7.021050.

[35]

Chris N Self, Marcello Benedetti, and David Amaro. Protecting expressive circuits with a quantum error detection code. arXiv:2211.06703, November 2022. arXiv:2211.06703.

[36]

Cristina Cirstoiu, Silas Dilkes, Daniel Mills, Seyon Sivarajah, and Ross Duncan. Volumetric Benchmarking of Error Mitigation with Qermit. Quantum, 7:1059, July 2023. URL: https://doi.org/10.22331/q-2023-07-13-1059, doi:10.22331/q-2023-07-13-1059.

[37]

Kentaro Yamamoto, David Zsolt Manrique, Irfan T. Khan, Hideaki Sawada, and David Muñoz Ramo. Quantum hardware calculations of periodic systems with partition-measurement symmetry verification: simplified models of hydrogen chain and iron crystals. Phys. Rev. Res., 4:033110, Aug 2022. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.4.033110, doi:10.1103/PhysRevResearch.4.033110.

[38]

Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The Bravyi-Kitaev transformation for quantum computation of electronic structure. The Journal of Chemical Physics, 137(22):224109, December 2012. doi:10.1063/1.4768229.

[39]

Henrik Koch, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Reduced scaling in electronic structure calculations using Cholesky decompositions. The Journal of Chemical Physics, 118(21):9481–9484, 06 2003. URL: https://doi.org/10.1063/1.1578621, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/118/21/9481/19024657/9481\_1\_online.pdf, doi:10.1063/1.1578621.

[40]

Evgeny Epifanovsky, Dmitry Zuev, Xintian Feng, Kirill Khistyaev, Yihan Shao, and Anna I. Krylov. General implementation of the resolution-of-the-identity and Cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks. The Journal of Chemical Physics, 139(13):134105, 10 2013. URL: https://doi.org/10.1063/1.4820484, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4820484/15465582/134105\_1\_online.pdf, doi:10.1063/1.4820484.

[41]

Mario Motta, Erika Ye, Jarrod R McClean, Zhendong Li, Austin J Minnich, Ryan Babbush, and Garnet Kin-Lic Chan. Low rank representations for quantum simulation of electronic structure. npj Quantum Information, 7(1):83, 2021.

[42]

David J Thouless. Stability conditions and nuclear rotations in the hartree-fock theory. Nuclear Physics, 21:225–232, 1960.

[43]

Ian D Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical review letters, 120(11):110501, 2018.

[44]

Bo Peng and Karol Kowalski. Highly efficient and scalable compound decomposition of two-electron integral tensor and its application in coupled cluster calculations. Journal of chemical theory and computation, 13(9):4179–4192, 2017.

[45]

Rodney J. Bartlett and Monika Musiał. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79(1):291–352, February 2007. doi:10.1103/RevModPhys.79.291.

[46]

Abhinav Anand, Philipp Schleich, Sumner Alperin-Lea, Phillip W. K. Jensen, Sukin Sim, Manuel Díaz-Tinoco, Jakob S. Kottmann, Matthias Degroote, Artur F. Izmaylov, and Alán Aspuru-Guzik. A Quantum Computing View on Unitary Coupled Cluster Theory. arXiv:2109.15176 [physics, physics:quant-ph], September 2021. arXiv:2109.15176.

[47]

I. T. Khan, M. Tudorovskaya, J. J. M. Kirsopp, D. Muñoz Ramo, P. Warrier, D. K. Papanastasiou, and R. Singh. Chemically aware unitary coupled cluster with ab initio calculations on an ion trap quantum computer: A refrigerant chemicals’ application. The Journal of Chemical Physics, 158(21):214114, 06 2023. URL: https://doi.org/10.1063/5.0144680, doi:10.1063/5.0144680.

[48]

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, September 2017. doi:10.1038/nature23879.

[49]

Juan Miguel Arrazola, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado, and Nathan Killoran. Universal quantum circuits for quantum chemistry. Quantum, 6:742, June 2022. URL: https://doi.org/10.22331/q-2022-06-20-742, doi:10.22331/q-2022-06-20-742.

[50]

Gian-Luca R Anselmetti, David Wierichs, Christian Gogolin, and Robert M Parrish. Local, expressive, quantum-number-preserving vqe ansätze for fermionic systems. New Journal of Physics, 23(11):113010, nov 2021. URL: https://dx.doi.org/10.1088/1367-2630/ac2cb3, doi:10.1088/1367-2630/ac2cb3.

[51]

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52:3457–3467, Nov 1995. URL: https://link.aps.org/doi/10.1103/PhysRevA.52.3457, doi:10.1103/PhysRevA.52.3457.

[52]

Adenilton J. da Silva and Daniel K. Park. Linear-depth quantum circuits for multiqubit controlled gates. Phys. Rev. A, 106:042602, Oct 2022. URL: https://link.aps.org/doi/10.1103/PhysRevA.106.042602, doi:10.1103/PhysRevA.106.042602.

[53]

Philipp Niemann, Rhitam Datta, and Robert Wille. Logic synthesis for quantum state generation. In 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), volume, 247–252. 2016. doi:10.1109/ISMVL.2016.30.

[54]

Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, and Kristan Temme. Tapering off qubits to simulate fermionic Hamiltonians. arXiv:1701.08213 [quant-ph], January 2017. arXiv:1701.08213.

[55]

Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure optimization for parameterized quantum circuits. Quantum, 5:391, January 2021. doi:10.22331/q-2021-01-28-391.

[56]

James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum Natural Gradient. Quantum, 4:269, May 2020. doi:10.22331/q-2020-05-25-269.

[57]

James C Spall. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest, 19(4):482–492, 1998.

[58]

Gerald Knizia and Garnet Kin-Lic Chan. Density matrix embedding: a simple alternative to dynamical mean-field theory. Physical review letters, 109(18):186404, 2012.

[59]

Gerald Knizia and Garnet Kin-Lic Chan. Density matrix embedding: a strong-coupling quantum embedding theory. Journal of chemical theory and computation, 9(3):1428–1432, 2013.

[60]

Sebastian Wouters, Carlos A Jiménez-Hoyos, Qiming Sun, and Garnet K-L Chan. A practical guide to density matrix embedding theory in quantum chemistry. Journal of chemical theory and computation, 12(6):2706–2719, 2016.

[61]

M. Krompiec and D. Muñoz Ramo. Strongly contracted n-electron valence state perturbation theory using reduced density matrices from a quantum computer. arXiv preprint, pages 2210.05702, 2022. arXiv:2210.05702, doi:10.48550/arXiv.2210.05702.

[62]

Yang Guo, Kantharuban Sivalingam, and Frank Neese. Approximations of density matrices in n-electron valence state second-order perturbation theory (nevpt2). i. revisiting the nevpt2 construction. J. Chem. Phys., 2021.

[63]

Ewa Pastorczak and Katarzyna Pernal. Correlation energy from the adiabatic connection formalism for complete active space wave functions. J. Chem. Theory Comput., 14(7):3493–3503, 2018.

[64]

Hans Martin Senn and Walter Thiel. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition, 48(7):1198–1229, 2009. doi:10.1002/anie.200802019.

[65]

Lili Cao and Ulf Ryde. On the Difference Between Additive and Subtractive QM/MM Calculations. Frontiers in Chemistry, 2018.

[66]

A. Klamt and G. Schüürmann. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2, pages 799–805, January 1993. doi:10.1039/P29930000799.

[67]

Filippo Lipparini, Giovanni Scalmani, Louis Lagardère, Benjamin Stamm, Eric Cancès, Yvon Maday, Jean-Philip Piquemal, Michael J. Frisch, and Benedetta Mennucci. Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. The Journal of Chemical Physics, 141(18):184108, November 2014. doi:10.1063/1.4901304.